THE MEASUREMENT OF CONSENSUS IN PAIR-COMPARISON STUDIES¹

LEONEL CAMPOS Ateneo de Manila University

It is suggested that Kendall's coefficient of agreement, u, is not an appropriate measure of consensus in pair-comparison studies. A new index of consensus, M(c), is described. It is further suggested that Kendall's own adaptation of the X^2 may be used, with minor modifications, to test the significance of a departure of M(c) from a value of zero.

Kendall (1962) describes a coefficient of agreement, u, to be used in the context of pair-comparison studies. His formula may be written,²

$$u = \frac{2 \sum_{i,j} \left[\begin{pmatrix} a_{ij} \\ 2 \end{pmatrix} + \begin{pmatrix} a_{ij} \\ 2 \end{pmatrix} \right]}{\begin{pmatrix} k \\ 2 \end{pmatrix} \begin{pmatrix} n \\ 2 \end{pmatrix}} - 1 \quad (1)$$

where

- a_{ij} , the number of observers who, for any given comparison between an object, or stimulus s_i and a second object, or stimulus s_j , decide that $s_i > s_j$;
- a_{ji} , the number of observers who, for any individual comparison between s_i and s_j , decide that $s_j > s_i$;
- *n*, the total number of observers, i.e., $n = a_{ij} + a_{ji};$
- k, the number of objects, or stimuli, under consideration

 $\sum_{i,j'}$, the adding operation over all the

comparisons between s_i and s_j , and,

 $\begin{pmatrix} a_{ij} \\ 2 \end{pmatrix} \begin{pmatrix} a_{ji} \\ 2 \end{pmatrix} \begin{pmatrix} a_{ji} \\ 2 \end{pmatrix} \begin{pmatrix} k \\ 2 \end{pmatrix} \begin{pmatrix} n \\ 2 \end{pmatrix}$ the combinations of a_{ij} , a_{ji} , n, and k, taken 2 observations at a time, respectively. Formula (1) suffers from several deficiencies.

1. It yields, -1 < u < 1. That is, if u > 0, positive, it indicates agree-ment, and, if u = 1.00, complete un-animity is presumed to exist; if u = 0.00, it indicates "lack of agreement", and if u < 0, negative, it suggests "disagreement." The problem here is one of interpretation. What is the difference between "lack of agreement" and "disagreement"? It is of interest that Kendall also defined a coefficient of concordance, W, and gave it the range, 0 < W < 0, since disagreement or contradiction, is illogical when more than two individuals are involved. But u also gives negatives values, and yet, the basic rationale for W and u is essentially the same. It is true that as n approaches infinity the negative values of *u* shrink towards zero, but this seems to be a failure of the model to account for empirical data, rather than a desirable logical attribute.

2. a_{ij} and a_{ji} are complementary quantities, and are not expected to vary randomly with respect to each other, but formula (1) treats them as though they were entirely unrelated; finally,

3. Formula (1) implies that the effects of a_{ij} and a_{ji} combine additively to contribute to the observed degree of agreement; however, a_{ij} indicates the number of individuals disagreeing — or not agreeing — with a_{ji} other individuals, since the former prefer s_i over s_{ij} , while the latter cast their vote to

¹This communication represents Report No. 5 of the Laboratory of Experimental Psychology of the Ateneo de Manila University.

logy of the Ateneo de Manila University. ² For details about the technique of paircomparisons and about Kendall's *u*, the reader is referred to David (1963), Edwards (1957), Kendall (1962), or Moroney (1963).

favor s_j over s_i . It is not apparent how these two quantities can give additive effects.

All these are serious short-comings. They suggest the possibility of a logical miscalculation in the formulation of (1).

There is an alternate way for arriving at a measure of consensus as obtained in pair-comparison studies. Consider the fact that for every comparison (s_i, s_j) , some individuals choose $s_i > s_j$. There are a_{ij} of them; also some individuals choose $s_j > s_i$. Their number is a_{ii} . Clearly these two groups of observers are at odds in this respect. By the multiplication principle, the number of ways in which they can fail to agree with one another is, (a_{ij}) (a_{ji}) , the product of their numbers. If n is even, no decisions are possible if $a_{ii} = n/2 =$ a_{ii} . The maximal number of ways in which the two groups can disagree in this case turns out to be, $n^2/4$. Conversely, where there is complete unanimity, $a_{ij} = 0$, or $a_{ji} = 0$. In any case, (a_{ij}) $(a_{ji}) = 0$, also. Therefore, the ratio of partial disagreement to total disagreement — or "no consensus" may be expressed as

$$d = \frac{4(a_{ij}) (a_{ji})}{n^2}$$
(2)

and may be regarded as an index of disagreement for any single comparison of s_i and s_j , in which *n* observers participated with one trial per individual. d = 0.000 if either a_{ij} or a_{ji} is zero, indicating no disagreement. d = 1.000 if $a_{ij} = n/2 = a_{ij}$, indicating a tie, or a general lack of consensus. In general, $0 \le d \le 1$.

Since d is a measure of the extent to which lack of unanimity exists, the magnitude of consensus may be defined by

$$c = 1 - d \tag{3}$$

for any comparison (s_i, s_j) . Now if we have made m = k(k - 1)/2 paircomparisons, the average c, M(c) is

$$M(c) = \frac{i_{,j}}{m}$$
(4)

Then from formula (3) we get

$$M(c) = \frac{\sum_{i,j} (1-d)}{m}$$
(5)

which upon substitution and simplification finally gives

$$M(c) = 1 - \frac{4 \sum_{i,j} (a_{ij}) (a_{ji})}{n^2 k(k-1)/2}$$

Formula (5) represents a measure, or an *index of consensus*, averaged over all the comparisons of pairs, (s_i, s_j) . It applies when n is an even number. If n is an odd number, no ties are possible but minimal consensus obtains when $a_{ij} = (n + 1)/2$, and $a_{ji} = (n - 1)/2$, or vice versa, in which case, $(a_{ij}) (a_{ji})^{--}$ $(n^2 - 1)/4$. By reasoning similar to that which led to (5), we arrive at

$$M(c) = 1 - \frac{4 \sum_{i,j} (a_{ij})(a_{ji})}{(n^2 - 1)k(k - 1)/2}$$
(6)

to cover the case in which n is an odd number. It can be easily verified that (5) and (6) always yield values of M(c)such that, $0 \le M(c) \le 1$.

An example of the computation of M(c). A set of 10 words (Agitolalia, Catelectrotonus, Decibel, Goniometer, Leptosome, Nares, Paralexia, Schizothymia, Sciosophy, and Tautophone) were combined according to the pair-comparison strategy. Twenty-eight scphomores were then asked to choose from each pair that word which was more familiar, or which "sounded" more fami-The list of pairs given liar to them. to the Ss is shown in Table 1. The Ss indicated their preference by putting an X on the blank space provided between the words, on the side of the word of their choice. For the purpose of getting M(c), it is enough to define a_{ij} as the number of choices assigned to the word on the left, regardless of the identity of the word. Such procedure is logically faulty, but is otherwise economical and arithmetically exact.

Defining a_{ij} in the manner described above is economical in the sense that

LEONEL CAMPOS

TABLE 1

LIST OF WORDS AS PRESENTED TO S.

On the right of each pair is	the corresponding a_{ii} , a_{ii}	, and (a_{ii}) (a_{ii}) . (See text
for more complete description).	· · · · · ·	- -

	Pa	uir	·····	a_{ij}	a _{ji}	(a_{ij}) (a_{ji})
1.	catelectrotonus		agitotalia	12	16	192
2.	decibel		catelectrotonus	28	0	0
3.	goniometer	<u> </u>	decibel	. 0	28	0
4.	leptosome		goniometer	12	16	192
5.	nares		leptosome	20	8	160
6,	schizothymia	· · · · · · · · · · · · · · · · · · ·	nares	18	10	180
7.	sciosophy		schizothymia	10	18	180
3.	goniometer		sciosophy	21	7	147
9.	paralexia	<u></u>	tautophone	16	12	192
10.	agitolalia	••	decibel	1	27	27
11.	catelectrotonus		goniometer	2	26	52
12.	decibel		leptosome	26	2	52
13.	goniometer		nares	· 11	17	187
14.	leptosome		schizothymia	11	17	187
15.	nares	<u></u>	sciosophy	18	10	180
16.	schizothymia	· · · · · · · · · · · · · · · · · · ·	tautophone	16	12	192
17.	sciosophy		paralexia	8	20	160
18.	goniometer		agitolalia	18	10	180
19.	leptosome		schizothymia	22	6	132
20.	nares		sciosophy	2	26	52 '
21.	schizothymia		goniometer	12	16	192
22.	sciosophy		leptosome	8	20	160
23.	tautophone		nares	12	16	192
24	paralexia		schizothymia	18	10	180
25.	agitolalia	·	leptosome	9	19	171
26.	catelectrotonus		nares	5	23	115
27.	decibel		schizothymia	28	0	Q
28.	goniometer		sciosophy	22	6	132
29.	Teptosome	· · ·	tautophone	12	10	192
31	nares		paralexia	. 20	10	180
32	schizothymia		catelectrotonus	19	9	171
33.	sciosophy		decibel	10	27	27
34.	tautophone	· · · ·	goniometer	16	12	192
35.	paralexia	· · ·	leptosome	. 17	11	187
36.	agitolalia		schizothymia	8	20	160
37	catelectrotonus	·	sciosophy	12	16	192
38.	decibel		tautophone	28	. 0	0
39.	goniometer		paralexia	13	15	195
40.	sciosophy	· .	agitolalia	16	12	192
41.	tautophone	·	catelectrotonus	. 20	8	160
42.	paralexia	<u></u>	decibel	1	27	27
43.	agitolalia		tautophone	7	· 21	147
4 4.	catelectrotonus		paralexia	2	26	.52
45.	paralexia	, 	agitolalia	23	5	115
			Sums:	619	541	6135

we have to count only the X's on the left. a_{ji} can then be found by subtracting a_{ij} from n. That is, $a_{ji} = n - a_{ij}$. These savings in terms of labor are made possible by the lack of directionality of the product, $(a_{ji})(a_{ij})$. In Table 1 the a_{ij} 's and a_{ji} 's are lined up with the item to which they correspond. Similarly, the products, $(a_{ij})(a_{ji})$ are also given, and from the column of products we obtain, $\sum_{i,j} (a_{ij})(a_{ji}) = 6135$. Since k = 10, k(k - 1)/2 = 45, n = 28 an even number, we use formula (5):

$$M(c) = 1 - \frac{4(6135)}{(784) (45)}$$

= .3045

In M(c) we have avoided the pitfalls that plague u (formula (1)), as discussed above. In addition, defining M(c) as an average presents the distinct advantage of allowing us to find a "partial" M(c)—call it m(c)—which may be estimated over any number mof c om p a r i s o n s, not necessarily k(k-1)/2. Suppose, for instance, that we are interested in the behavior of s_1 in reference to all other stimuli. Here, m = (k - 1), since s_1 enters only into k - 1 comparisons. Accordingly, M(c)becomes,

$$m(c) = 1 - \frac{4 \sum_{1,j} (a_{1j})(a_{j1})}{n^2(k-1)}$$
(7)

if n is even; if n is odd, n^2 becomes $n^2 - 1$, and the denominator of the last term is $(n^2 - 1)(k - 1)$. That is, formula (7) indicates, that we may select any comparisons we wish and average c (formula (3)), over them, to obtain what resembles a sort of "item analysis" for pair-comparison data.

The significance of M(c). The next problem is that of evaluating the significance of M(c). In reference to u, Kendall (1962) has shown that the quantity,

$$X^{2} = \frac{4}{n-2} \left\{ \left(\sum_{i,j} \left[\begin{pmatrix} a_{ji} \\ 2 \end{pmatrix} + \begin{pmatrix} a_{ij} \\ 2 \end{pmatrix} \right] - \frac{1}{2} \begin{pmatrix} k \\ 2 \end{pmatrix} \left(\begin{pmatrix} n \\ 2 \end{pmatrix} - \frac{n-3}{n-2} \right\}$$
(8)

is distributed as X^2 with degrees of freedom

$$df = \frac{2\binom{k}{2}\binom{n}{2}}{(n-2)^2}$$
(9)

Since,

$$\sum_{i,j} \left[\begin{pmatrix} a_{ji} \\ 2 \end{pmatrix} + \begin{pmatrix} a_{ij} \\ 2 \end{pmatrix} \right]$$

$$= \begin{pmatrix} k \\ 2 \end{pmatrix} \begin{pmatrix} n \\ 2 \end{pmatrix} - \sum_{i,j} (a_{ij}) (a_{ji})^{(10)}$$

and since, when n is even we can extract from formula (5),

$$\sum_{i,j} (a_{ij}) (a_{ji}) = \frac{\left[1 - M(c)\right] \binom{k}{2} n^{2}}{4}$$
(11)

by appropriate substitutions involving formulas (11), (10), and (8)—working in a reverse order—we obtain, after much simplification (we omit the algebra),

$$X^{2} = \frac{nk(k-1)}{2(n-2)^{2}} \left[M(c) \quad (n^{2} - 2) \quad + 1 \right]$$
(12)

if n is an odd number, then, from (6) we get, (13)

$$\sum_{i,j} (a_{ij}) (a_{ji}) = \frac{\left[1 - M(c)\right](n^2 - 1)}{4} \binom{k}{2}$$

Again, suitable substitutions and algebraic calisthenics eventually yield---tho intermediate steps are omitted,

$$X^{2} = \frac{k(k-1)(n-1)}{2(n-2)^{2}}$$

$$\left[M(c) (n+1) (n-2) + 2\right] (14)$$

For both (13) and (14) the degrees of freedom remain as stated in formula (9).

It is of interest to notice that formulas (12) and (14) never give $X^2 = 0.000$, even if M(c) = 0.000. This is not a deficiency acquired in the process of translating (8) into (12) and (14). If, when n is even, we let $a_{ij} = n/2 = a_{ji}$, holding them constant over all k(k - 1)/2 comparisons, formula (8) becomes, after simplification,

$$X^{2} = \frac{nk(k-1)}{2(n-2)^{2}}$$
(15)

and if, when n is odd we let, $a_{ij} = (n + 1)/2$, and $a_{ji} = (n - 1)/2$, holding constant over all k(k - 1)/2 comparisons, formula (8) becomes, after simplification,

$$X^{2} = \frac{k(k-1)(n-1)}{(n-2)^{2}}$$
(16)

Both (15) and (16) are identical to the residuals of (12) and (14), respectively, when M(c) = 0.000. Now if k remains small, while n is increased, (15) and (16) approach zero as n grows large. For this reason we suggest that the constants 1 and 2 be dropped from (15) and (14), respectively. This way, if n is small, the investigator places himself on the conservative side in estimating probabilities related to X^2 while if n is large, it will not make any difference anyway. Accordingly, formula (15) becomes,

$$X^{2} = \frac{nk(k-1) (n^{2}-2)}{2(n-2)^{2}} M(c) \quad (17)$$

for M(c) computed with n, even. If M(c) is computed with n, odd, formula (16) becomes,

$$X^{2} = \frac{k(k-1) (n^{2}-1)}{2(n-2)} M(c) \quad (18)$$

for a conservative estimate of the probability that M(c) deviates seriously from a value of zero. Finally, to complete the example started above, we find that given the values n = 28, k = 10, and M(c) = 0.3045, formula (9) gives

$$df = \frac{(2) (10) (9) (29) (28)}{(4) (676)}$$
$$= 50.3254$$

that is, we have 50 degrees of freedom (rounding off), while formula (7) gives

$$X_{50}^{2} = \frac{(28 (10) (9) (784 - 2) (0.3045)}{(2) (676)}$$

= 443.8312

This value of X^2 with df = 50 has p < .001, and can be interpreted as suggesting that the magnitude of consensus obtaining for this group, with these particular set of stimuli, implies a definite trend towards agreement about the ordinal arrangement of the stimulus words in terms of their familiarity to the group.

REFERENCES

- DAVID, H. A. The method of paired comparisons. Griffin's Statistical Monograph & Courses. London: Griffin, 1963.
- EDWARDS, A. L. Techniques of attitude scale construction. New York: Appleton-Century-Crofts, 1957.
- KENDALL, M. G. Rank correlation methods. (2nd ed.) London: Griffin, 1962.
- MORONEY, M. J. Facts from figures. (3rd ed.) Middlesex: Penguin Books, 1956.